MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9701 CHEMISTRY

9701/31 Paper 31 (Advanced Practical Skills), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9701	31

Question 1 Round all thermometer readings to the nearest $0.5^{\circ} \mathrm{C}$.

Question	Sections	Indicative material	Mark	
1 (a)	PDO Recording	(i) Presents data in single table of results - to include volume of FA 2, initial and final temperatures and temperature change. (ii) All columns correctly labelled with appropriate unit shown. Must use solidus, brackets or describe unit fully in words. If units not included in column headings every entry must have the correct unit shown.	1 1	
	MMO Collection	(iii) All thermometer readings recorded to $0.5^{\circ} \mathrm{C}$ (iv) Follows instructions - uses $10,20,30,40,50 \mathrm{~cm}^{3}$ of FA 2 + two additional volumes	1 1	
	MMO Decisions	(v) One extra volume of FA 2 on either side of the maximum for the first five expts. or Two extra volumes between identical values for the first five expts. or Two extra volumes the same side as the next highest reading.	1	
	MMO Quality	(vi) and (vii) Check and correct $\Delta \mathrm{T}$ where necessary. (If multiple readings for max. T then apply hierarchy: take value of consistent readings; take average and correct to nearest $0.5^{\circ} \mathrm{C}$) Compare temp rise with that obtained by the Supervisor (Expected value is $14.0^{\circ} \mathrm{C}$) For $30 \mathrm{~cm}^{3}$ FA 2: Award (vi) and (vii) for a temp rise of $0.0^{\circ}, 0.5^{\circ}, 1.0^{\circ} \mathrm{C}$ Award (vi) only for a difference of $1.5^{\circ} \mathrm{C}$	2	
	MMO Quality	(viii) and (ix) Check and correct $\Delta \mathrm{T}$ where necessary. Compare temp rise with that obtained by the Supervisor (Expected value is $13.5^{\circ} \mathrm{C}$) For $40 \mathrm{~cm}^{3}$ FA 2: Award (viii) and (ix) for a temp rise of $0.0^{\circ}, 0.5^{\circ}, 1.0^{\circ} \mathrm{C}$ Award (viii) only for a difference of $1.5^{\circ} \mathrm{C}$	2	[9]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9701	31

Question	Sections	Indicative material	Mark	
(b)	PDO Layout	(i) Temperature (rise) plotted on y-axis against volume (of FA 2) or FA 2 added $/ \mathrm{cm}^{3}$ on x-axis. Clearly labelled axes (ignore units unless $\mathrm{T}, \Delta \mathrm{T}$ or V used as labels) (ii) Uniform and sensible scales that allow points to be plotted in at least half of the squares on each axis. (6×4 big squares). $(0,0)$ may be considered - as an additional point or with a line going through it (iii) Visual check the "sweep" of all points, for all experiments recorded. Check the plotting of points for 10,30 and $50 \mathrm{~cm}^{3}$ of FA 2 (and any other "suspect" point) If any point is missing and that experiment was not carried out, check adjacent point Points should be within $1 / 2$ of a small square, in the correct square Do not award if T plotted instead of ΔT (iv) Appropriate lines drawn through the ascending and descending points. (Ignore any deviation through rounding at the maximum temperature rise) Do not award if both straight lines and curves drawn or there is any forced change in gradient.	1 1 1	[4]
(c)	ACE Interpretation	Reads from the graph (to within $1 / 2$ small square) the volume of FA 2 at the intersection of two lines. Allow rounding to the closest cm^{3} Do not award this mark if the lines/curves have been rounded at the maximum ΔT.	1	[1]
(d)	PDO Layout	Explains that the temperature rise is the dependent variable or Volume of FA 2 is the independent variable/one that is controlled/one that you vary (or words to that effect)	1	[1]
(e)	ACE Conclusion	Gives correct equation for the reaction (ignore state symbols) $\begin{aligned} & 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\ & \text { or } \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	1	[1]
(f)	PDO Display ACE Interpretation	Working is shown in (f)(i) (involves volumes and concentration, $2.0 \mathrm{~mol} \mathrm{dm}^{3}$) and (f)(ii) (any clear mole ratio) Has correct expression for $\frac{10.00}{1000} \times 2.0$ or an answer of 0.02(00) in (f)(i) and 0.04(00) in (f)(ii) There is no ecf within (f)	1 1	[2]
(g)	PDO Display	Expression given in the question paper is correctly evaluated to 2 or 3 significant figures. Allow a volume, read from rounded curves to be used in this expression. Normal rounding rules apply to the sig fig.	1	[1]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9701	31

Question	Sections	Indicative material	Mark	
(h)	ACE Interpretation	Uses the expression: (answer from $(c)+10) \times 4.3 \times \Delta \mathrm{T}$ read from graph Divides the answer above by answer to (f)(i) and gives answer in $\mathrm{kJ} \mathrm{mol}{ }^{1}$ with -ve sign Do not award this second mark unless candidate has calculated (a volume of soln $\times 4.3 \times \Delta T$)	1	[2]
(i)	ACE Improvements	Advantage of burette: Lower \% error or more accurately calibrated (must refer to or infer scale/graduations/markings/divisions) Disadvantage of burette: Takes longer to add the FA 2	1	[2]
(j)	ACE Interpretation	Candidate gives two of the following as significant sources of error. Heat loss (to the surroundings) Thermometer graduated at $1^{\circ} \mathrm{C}$ intervals Drying of cup/thermometer Initial temps of both solutions should be taken Other acceptable sources of error may be seen.	1	[1]
(k)	ACE Interpretation	(i) Maximum error in reading a $1^{\circ} \mathrm{C}$ graduated thermometer is given as $0.5^{\circ} \mathrm{C}$ (iii) Calculates answer in $\frac{\text { answer in (k)(i) } \times 2}{\text { answer in (k)(ii) }} \times 100 \%$	1	[2]
	Total		[26]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE ASIA LEVEL - May/June 2010	9701	31

Question 2

Question	Sections	Indicative material	Mark	
FA 3 is $\mathrm{BaCl}_{2}(\mathrm{aq})$; FA 4 is $\mathrm{MgBr}_{2}(\mathrm{aq})\left[\mathrm{MgCl}_{2}+\mathrm{NaBr}\right]$; FA 5 is $\mathrm{CaI}_{2}(\mathrm{aq})\left[\mathrm{CaCl}_{2}+\mathrm{NaI}\right]$; FA 6 is $\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$				
2 (a)	MMO Decisions	Chooses silver nitrate $/ \mathrm{Ag}^{+}(\mathrm{aq}) /$ solution containing Ag^{+}ions followed by (aqueous) ammonia.	1	[1]
(b)	PDO Recording MMO Collection	Results for three solutions and the two reagents from (a) (or three reagents if (a): ' $\mathrm{Ag}^{+}+\mathrm{NH}_{3}{ }^{\prime}, \mathrm{Pb}^{2+}$) if recorded in a single table (no repetition of solutions or reagents) Give one mark for correct observations with FA 3, FA 4 and FA 5. FA 3 - white ppt with Ag^{+}, soluble in $\mathrm{NH} 3(\mathrm{aq})$ FA 4 - cream ppt with Ag^{+}, partially soluble or insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$ (allow "creamy" not "creamy white") FA 5 - yellow ppt with Ag^{+}, insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$ If Ag^{+}and Pb^{2+} in (a), all observations must be correct (ignore any 'extra' NH_{3} if not in (a)) $\left(\mathrm{Pb}^{2+}\right.$: white, white, yellow ppts respectively)	1	[2]
(c)	ACE Conclusion	Mark consequentially on observations in (b) Expected conclusion Identifies FA 3 as solution containing Cl from "white ppt with Ag^{+}(soluble in $\mathrm{NH}_{3}(\mathrm{aq})$) given as evidence. Mark consequentially - ecf allowed here. (No retrospective to observations)	1	[1]
(d)	MMO Collection	Mark each of the boxes and see whether correct columns or rows give the better mark. Award the better mark. See table below for the expected observations	1 1 1	[3]

	FA 3	FA 4	FA 5
$+\mathrm{NaOH}(\mathrm{aq})$	ignore	white ppt	white ppt or "cloudiness"
$+\mathrm{NH}_{3}(\mathrm{aq})$	no ppt (allow reference to "cloudiness"/"slight white ppt")	white ppt	no ppt/no change/ no reaction
+ FA 6	yellow ppt	no ppt/no change/ no reaction/yellow soln	no ppt/no change/ no reaction/yellow soln

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9701	31

(e)	MMO Collection	Records (yellow) solution turning orange (or wtte, e.g. orange solution forms)	1	[1]
(f)	ACE Conclusions	Mark consequentially on observations in (d) and (e) Expected conclusions: Anion in FA 6 is chromate, $\mathrm{CrO}_{4}{ }^{2}$, from yellow soln turning orange in (e) or yellow ppt with FA 3 in (d) provided FA 3 not also identified from (d) and FA 3 contains Ba ${ }^{2+}$ from observations with NaOH and NH ${ }_{3}$ (or just NaOH if obs with FA 4 and FA 5 are correct with it) or FA 6 in (d)	1	[1]

FA $\mathbf{7}$ is a tertiary alcohol; FA 8 is an aldehyde; FA 9 is a ketone; FA 10 is a primary alcohol
\(\left.$$
\begin{array}{|c|l|l|l|l|}\hline \text { (g) } & \begin{array}{l}\text { MMO } \\
\text { Collection }\end{array}
$$ \& \begin{array}{ll}One mark for two correct observations with FA 7

One mark for correct observations with FA 8 and FA 9

One mark for two correct observations with FA 10

See table below for expected observations\end{array} \& 1 \& 1\end{array}\right][3]\)| [3] |
| :--- |

reagent	observations			
	FA 7	FA 8	FA 9	FA 10
acidified dichromate	no reaction		no reaction	(colour change to) green/blue-green/ cyan/turquoise (solution not ppt)
2,4-DNPH	no reaction	yellow ppt	yellow ppt	
Tollens' reagent	no reaction	silver mirror or black/grey solution or ppt		no reaction

$\left.\begin{array}{|c|l|l|c|c|}\hline \text { (h) } & \begin{array}{l}\text { ACE } \\ \text { Conclusions }\end{array} & \begin{array}{l}\text { No ecf from (g) } \\ \text { FA 7 contains the tertiary alcohol from no reaction with all } \\ \text { three reagents } \\ \text { or } \\ \text { no reaction with dichromate and 2,4-DNPH provided there } \\ \text { is no CON in the observation with Tollens' } \\ \text { FA 8 contains the aldehyde from the silver (mirror), black } \\ \text { or grey precipitate or solution with ammoniacal silver } \\ \text { nitrate } \\ \text { Allow from brown ppt if it is the only positive result with } \\ \text { Tollens'. }\end{array} & 1 & 1\end{array}\right]\left[\begin{array}{|c|c|c|}\hline\end{array}\right.$

